If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40x^2+70x+15=0
a = 40; b = 70; c = +15;
Δ = b2-4ac
Δ = 702-4·40·15
Δ = 2500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2500}=50$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(70)-50}{2*40}=\frac{-120}{80} =-1+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(70)+50}{2*40}=\frac{-20}{80} =-1/4 $
| 3f-2=12-4f | | 3=×2+5x | | 3(7x-2)=-21x-6 | | 6+4x=24 | | (x-5)^((2)/(3))=36 | | 72=1/2(x+4)(3x+6) | | 4x+2x=27-15 | | 3-2(5x-7)=3x+8 | | -1/3(n+15)=-12 | | 6+3(z-2)=-6z+5 | | 95/20=k/162 | | 6(3-2x)+4(3x-1)=5-(x+1) | | 9x+3=3(2x+7) | | -6(n+4)+27=-3n-3 | | 780=2x^2+10x-48 | | 5(10x+7)=50x-3 | | 20/2x-6=x+8/39 | | k/8-37=-37 | | 3x-3(3)=0 | | (x-5)^((2)/(3))=4 | | 22x+10=3x-2 | | 2x2+3x=10 | | 22x=11x | | 3(4x+2)-6=12x+0 | | 2-(n+6)=17 | | 7x+5=7(x+4) | | 7y-2=-3(2-y) | | x+x/2-40=2000 | | 2b-2/2=b-3/4 | | 2b-6=8b-8 | | p/4+30=4p | | 3/10x-4x+8/5=3/5 |